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Customers with requirements for secure 
data transmission, computer network-

ing, and high-bandwidth instrumentation 
are accentuating the need for photonic 
integrated circuit (PIC) technology. 
PICs will be the high-speed process-
ing chips of the future and will impact 
both commercial and LLNL program-
matic needs. Compact (LSI to VLSI), 
low-latency (sub-ps), wide-bandwidth 
(THz), ultrafast (100 Gb/s) miniaturized 
digital-logic, transmission, and sensor 
systems are potentially feasible. The de-
sign of novel integrated structures poses 
a considerable challenge, requiring 
models incorporating both microscopic 
and macroscopic physics.

Despite the strong photonic mod-
eling capability at LLNL, new nu-
merical methods are necessary as more 
complex photonic devices, materials, 
and confi gurations are devised. Three-
dimensional time-domain (TD) design 
tools are fundamental to enabling and 
accelerating technologies for the real-
ization of all-optical logic systems for 
data generation, transmission, manipu-
lation, and detection. We have been 
doing the research necessary to create 
these new numerical methods.

Project Goals
We are fi lling the gap between ex-

isting modeling tools and those needed 
for LLNL missions by extending the 
state of the art in simulation for the 
design of 3-D PICs. We have defi ned 
challenges that must be addressed in 
our codes, such as models for optical 
gain and nonlinearities, as well as mi-
croscopic, nonuniform, inhomogeneous 
structures. Our tools leverage LLNL’s 
expertise in computational electromag-
netics (CEM) and photonics. We have 
developed models and algorithms for 
incorporation into a new generation 
of 3-D simulation tools. These tools 

Figure 1. Field propagated 

from a Gaussian-triggered 

Auston-Switch THz source. 

The antenna and fi eld 

emitted from it are shown 

in (a). The time history 

of the fi eld at an on- axis 

receiver is shown in (b). 

The temporal spectrum of 

the fi eld is shown in (c).
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are general enough to be adapted to 
problems in many areas, and fl exible 
enough to embrace the design of future 
mixed-signal systems as well as stand-
alone systems in disparate regions of the 
EM spectrum.

Relevance to LLNL Mission
The ability to model complex 3-D 

photonic devices in the time domain 
is essential to LLNL for a broad range 
of applications. These include high-
bandwidth instrumentation for NIF 
diagnostics; microsensors for weapon 
miniaturization within the DNT pro-
grams; encryption devices and circuits 
for secure communications for NHI 

surveillance applications; high-density 
optical interconnects for high-
performance computing (core of the 
ASCI mission); and detection devices 
for homeland security.

FY2006 Accomplishments and Results
Most of our work has been concen-

trated in extending our two research 
codes: Quench3D and EMSolve. 
Quench3D is a narrow-bandwidth scalar 
beam-propagation-method code built 
for modeling large devices in which 
light propagates in a preferred direction. 
EMSolve is a vector time-domain code 
used for modeling small devices with 
either complicated geometries and/or 

no preferred direction for propagation. 
In support of both of these codes we 
have also been working on a program to 
generate accurate gain and absorption 
curves for semiconductor quantum wells 
as a function of quantum well structure, 
wavelength, and carrier density.

In the past year we spent time 
researching algorithms for incor-
porating a vector finite element 
beam-propagation solver and a finite 
element carrier-diffusion model into 
the Quench3D suite. The incorpora-
tion of vector finite elements into the 
BPM solver will allow us to model the 
dependence of gain on polarization in 
amplifier and laser structures. In addi-
tion we spent some time determining 
how the code should be parallelized.

We researched the algorithms neces-
sary for incorporation of carrier diffu-
sion and polarization models for 2- and 
4-level absorption/gain in the EMSolve 
suite. We also performed research on 
submesh modeling of carrier effects in 
EMSolve. These codes can be used to 
effi ciently examine power scaling in 
Auston-Switch-based THz sources and 
model Vertical Cavity Surface Emitting 
Lasers (VCSELs). Using the results of 
this research we were able to simulate 
the power scaling effects of Auston-
Switch-based THz sources. Figures 1 to 
3 illustrate the results of this work.

The quantum well modeling code 
work primarily involved researching ex-
tensions and corrections to the ground-
work that had been laid in the summer 
of FY2005.
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Figure 2. Field propagated from a trio of Gaussian-triggered Auston-Switch THz sources.  

Figure 3. Electric fi eld (a) and polarization (b) for a 2-level material illuminated by a beam of EM radia-

tion. The polarization is computed using an auxiliary diff erential equation and is important in determin-

ing the gain and/or absorption in VCSEL simulations.
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